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Abstract

The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging

problems. This is particularly important when high system peformance is to be guaranteed at, all times. Recently,

the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does

not require all explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it

combines adaptation with past observations to directly estimate the effec..._._[tof the plant dynamics.

This paper formulates a control law for a class of dynamic systems and then presents a sufficient conditioff for

control system stability. The derivation is based on the bounded input-l,,,unded output stability approach using

L_o function norms. The control scheme is implemented on a five degrees-,,(-freedom high speed and high precision

magnetic bearing. 'File control performance is evaluated using step respon,,._, frequency responses and disturbance

r_jrction prop,'rties. Tile experimental data show an excellent control per[',,rmance despite the system complexity.

1 Introduction

Some classical control methods deal with well known linear time-invariant systems. In many applications, however,

some relevant part of the system maybe unknown, time varying, or nonlinear. Controlled systems are thus often

limited to operating in only a small portion of their available range. For example, servo motors must operate in

the linear part of their range for accurate control. Restrictions such as these have led to the developm, _lt of control

techniques that deal with such complexities.

Several types of modern control strategies have been dewr[oped to deal with nonlinear, time-variant systems. One

of the first methods to accommodate nonlinear systenm was Model Reference Control. This technique employs a

model of the system and uses the difference between the model response and the plant response as the input signal to

the plant. [18]. The model is either a physical model or a simulated system on a computer. Although i! has no variable

paramet, ers, it is very useful for either specifying desired performance or for the observation of unaccessabte states.

A drawback in this technique is that it requires knowledge of the full dynamic model and system limitz_tions. When

perfect cancellation of the system nonlinearities is not achieved due to imperfect modeling or inaccur:,te parameter

values, the dynamic performance of the plant may be degraded to the point of closed lo¢_p instability i'22].

Another advanced technique is Adaptive Control. An adaptive system measures a certain index of performance

which is a function of tile inputs, states and/or outputs of the system. From the comparison of the measured index of

performance with a set of given ones, the adaptation mechanism modifies the parameters of the controller or the set of

given ones [4,14,16,21]. '] here are several classes of adaptive control. A very common variation uses a desired reference

model as a basis for com_arison and is termed Model Reference Adaptive Control (MRAC). In the direct MRAC, no

attempt is made to identify the plant parameters. Controller parameters are directly updated. In Self-Tuning control,

plant model parameters are identified/modified and the controller action is automatically updated according to a
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lix,'dr,.gulat,_rd,':,iKn.AmH.ii,.ralq)r,_:t,llK,.li,,ral.,_sth,'c,mt.rolaction i,'ipart hy art ;tdalHiw.F,.,!dl_>rwardc_mtroll,.r

which "q_ehavcs" _L_the "hlw_rsc" of th,,plant [22].All adaptivo controlh;rsshare t,he di.,,tinguishingfealllr,:,of s}_t.,,Tn

identification followed by variation of parameters to maintain desired performance. A drawback of adap, ation is that

it is generally slow mid computationally intense. Often the environment changes faster than the system, causing

performance degradation or even instability. Other references on adaptive control include [8,9,11,12,19,20,24]

Other control methods, such as Variable Structure Controllers, take totally different strategies to achieve stability

in nonlinear systems. This type of controller utilizes state feedback in a control law which switches the structure

of the closed loop system between trajectories which may themselves be unstable or marginally stable but when

combined by the control law in a switching technique, result in a system which is stable. A method of switching

called "sliding mode", described in [23,26,27,37], arranges the switching so that ideally the system remains on one of

the switching lines (or surfaces) as it "slides" stably toward the origin of the phase plane, l_eal systems, however, take

time to switch trajectories, resulting in periods of infinite frequency, or no control, as the system switches from one

trajectory to another while attempting to remain on the switching line. This high frequency chattering undesirably

excites high frequency dynamics.

Systems which are capable of recognizing the familiar features and patterns of a situation and which use past

experiences in behaving in an optimal fashion are called Learning Systems. A learning system, when pn,sented with

a novel situation, learns how to behave by an adaptive approach. Then if the system experiences the same situation,

it will recognize and behave optimally without going through the same adaptive approach. An advantage is that

the system need not be identified in every environmental situation, making the response time faster under situations

that have already been learned. A drawback is that such systems often require repetitive trial and error to bring

them into an operating state [1,25]. A large list of references on unethods of control mentioned above can be f,_)und

in [13] and [17].

Another method, Time Delay Control (TDC) proposed in references [30,31,32,33], depends neither on estimation

of specific parameters, repetitive actions, infinite switching frequencies, or discontinuous control. It employs, rather,

direct estimation of the effect of the plant dynamics through the use of time delay. The controller uses the gathered

information to cancel the unknown dynamics and disturbances simultaneously and then inserts the desired dynamics

into the plant. The TDC employs past observation of the system response and control inputs to directly modify

the control actions rather than adjust the controller gains. It updates its _,l,servation of the system eve_ y sampling

period, therefore, estimation of the plant dynamics is dependent upon the sn,,IAing frequency. The TDC has a similar

feature as the learning control algorithm proposed in reference [10]. This learning con,col algorithm is applicable

for nonlinear systems with linear input action. It updates the control aclion in each learning trial by comparing

the state derivative of the actual trajectory with that of the desired reference trajectory in the previous trial. Time

Delay Control differs from this approach in that the control action is updated at each instant based on recent past.

This paper uses the concepts developed in references [30,31,32,33] to explore the potentials and limitations of the

TDC approach.

The TDC control algorithm leads to systems that have a similar form to that of time delay systems. These systems,

which are also referred to as time-lag or retarded systems , are systems in which time delay exists between the cause

and effect. In time delay systems, these delays arise as a result of delays existing ix, the hardware components or

computation [5]. In our case, the time delay is a feature of the control algorithm. The mathematical formulation for

such time delay systems leads to delayed differential equations. A special class of these equations are referred to as

integral-differentiM equations which were studied by Volterra [29]. Volterra was the first to study such systems and

developed the theory to investigate the consequences of time delay. Several other researchers have contributed to the

development of the general theory of the Volterra type. R.eference [15} provides several references of contribntors to

delayed differential equations including historical perspective of control theory and developments of time delay.

The Time Delay Control was originally formulated in [30] for a class of nonlinear systems with linear input action.

The control algorithm has been applied to robot manipulators and servo systems with v,.ry satisfactory results even

under large system parameter variations and disturbances [30,31,32,33,35]. Stability a_d convergence analysis was

also performed for linear SISO systems [34].

This paper formulates a control law for a class of dynamic systems with nonlinear inl,ut action and then presents

a sufficient condition for control system stability. The derivation is based on the I)ou_ded input-bounded output

stability approach using L_ function norms. The control scheme is implemented on a live degrees-of-freedoJ_ high

speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency

responses and disturbance rejection properties. The experimental data show an excellent control performance despite

the system complexity.
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2 Time Delay Control

In this paper we are concerned with a class of systems described by the following differential equations,

x(t) = F(x, t)+ G(x,u,t) + D(t) (i)

where x(t) (5P_'_and u(t) (5"R,r are the system state vector and control input vector respectively.F(x, t),G(x, u, t)

and D(t) are vector functions with appropriate dimensions and represent respectiw_ly kt_own dynamics, unknown

dynamics and disturbances. The variable t represents time. In order to transform the sy:tem into a familiar form,

Equ.(1) can be written as

X(t) = F(x,t) + H(x,u,t) + Su(t) (2)

where the new term H(x,u,t) is defined as

H(x,u,t) = G(x,u,t) + D(t)- Bu(t) (3)

and B is a matrix to be selected by the designer. A reference model that generates the desired trajectory is chosen

as a linear time invariant system,

x,,,(t)= Amxm(t) + Bmr(t) (4)

where Xm(t) E "P_'* is a reference model state vector, r(t) (5 _r is a reference input. Am and 13,,, are cor_statat

matric_.s with appropriate dimensions.

The class of systems considered in this paper includes systems that satisfy a matching condition. It was shown

in references [30,32,33] that systenm in a special canonical form satisfy the matching condition. These systems can

be partitioned as follows

[-] I-x.... ; F(x, t) = ...

x_ Fr(x,t)

[0] [0]H(x,u,t) = ... ; B =
H.(x, u,') Br

where the partial states are xq (5 "R.n-r,xr (5 "R/,xs = [Xr+l,Xr+2... ,X,] 1 E _n-_ The vector functions have the

following dimensions F_(x,t), H,(x,u,t) (5 _,B (5 P_"×_ and B, (5 _/×_ is of rank r The matrict__s involved in

the rof_'rence model of Equ. (4) are also partitioned iu the same manner,

A m _-- i0,,,] [0]
where Iq E "P_(.... )x(,,-_) , A,_ (5 _,x, , B,nr (5 R _×_ ,Bm (5 R "x_ and r(t) E _- Furthermore a.ssurne a feedback

matrix K of the form,

[o]K: K;
where K E _,_×n and K, (5 ./_n The objective is to generate a control action u that forces the error to vanish

according to
= (A,, + K)e = Ace (5)

The control action that combines past observations with adaptation fi,r systems describ, d by Equ. (2) is given by

u(t) = B+[-x(t - L) + F(x,t - L) - F(x, t)

+Amx(t) + n,,,r(/) + Bu(t - L) - Ke(t)]

(6)



where the paxameter L represents the time delay [30,32,33], tile error vector e is defined as the difference between

the plant and the reference model state vectors,

e = x,,, - x (7)

The term B + is the pseudo-inverse matrix defined as 13 + = (13T13)-tB'r" For the special canonical form consid_red,

B + is given by

°1
-I

0

: (n_'n_)-'[o 13_] = B;'[o x_] : [o B;']

[0BT]

The control action now reduces to

_(t) = 137_[-,L(t- L)+ F,(x,t- L) - F,(x,t)+ A_,×(t)

+13,-u(t - L) + Bm,-r(t) - K,e(t)] (8)

Note that this control law is a special case of a general algorithm which uses convolutions for estimating unknown

system dynamics [36].

The objective of this research is to be able to control such systems and guarantee performance despite the presence

of large dynamic variations in G(x,u,t) and large unexpected disturbances in D(t).

As described in [31], each term in Equ.(8) has the following meaning: (1) B_."t, cancels the control matrix B,, (2)

the term -F(x, t) - _(t - L) + F(x,/- L) + Bu(t - L) attempts to caacel the undesired known nonlinear dynamics

F(x, t), the unknown nonlinear dynamics and the unexpected disturbances H(x, t), (3) the term Amx + Gmr inserts

the desired dynamics of the reference model, and (4) the error feedback term -Ke adjusts the error dynamics. Thus

this controller observes the current state, the state derivatives (estimates) and the inputs of the system at time t - L,

one step into the past, and determines the best control action that should be commanded at time t. The scheme

used in the time delay control is renfiniscent of numerical methods used t,, _olve differen'ial equations.

3 Stability Analysis

3.1 Error dynamics

As indicated in [32,33], the stability of such control systems using time delay depends on the delay parameter L, the

control gains K, the speed of the response of the plant and the speed of response of th. reference trajectory The

method used to perform this analysis is based on the bounded input bounded output stability procedure. In what

fotlows, we discuss the stability analysis for two situations pertaining to whether the control distribulion matrix
OU

is constant and known or unknown. In order to perform the stability analysis, we formulate the governing equations

for the error dynanfics. First using the control action of Equ.(8), the plant equations of Equ.(1) become

x(t) =

X_

F_(x,t) + H_(x,u,t) + [-x_(t- L) + F,(x,t - L) - F_(x,t)

+B_u(t - L) + A,n_x(t) + Bm_r(t) - K_e(t)]

H_(x,u,t) - Hr(x,u,t - L) + Amrx(t) + Bm_r(t) - K_e(t)

The previously defim'd error e of Equ.(7) is now governed by

6(0 = (A,,, + K)e(0 + H(x,u,t - L) - H(x,u,t) (o)

where the second and third terms are forcing functions due to the unknown system dynamics and unpredictable

disturbances.
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Rewriting Equ. (9) ,as

where

and

e(t) = (Am + K)e(t) + p(t)

P(t) = [ 0 ]
p_(t)

(lO)

p_(t) = H_(x,u,t - L) - H_(x,u,t)

One ,.ay ask the question: what conditions does the vector p(t) have to satisfy for tile system to be stable? A

sntficient col,(lition for stability will be derived in the next section.

3.2 Sufficient conditions for stability

This section presents a general solution to this multi-input multi-outp it control problem VCe will use the bounded

input-bounded output approach based on Leo norms in order to deri, e suflieient conditions for stability. We now

consider the governing differential of tile error as given by Equ.(10) an 1 its correponding time response,

e(/) -= e(A_+K)te(O) + L t
e(i.+K!+ t-rlp(r)dT-

We will use H(.)TII to indicate the norm of the time traneated functio,, (.) and H(.)N/for the induced , ,atrix norm.

Taking the norm of the error [28],

IleTtl-< II (e(A'+K_t)1. II, Ile(0)ll + sup,+[o,T] fo II.'(A'_ +K>c'-')ll'llPCr)lldr

_ II (etA'+K)'); t. I1' Ile(O)ll + IIPTIIsuP,+t0,T]/o I1" A'+K'I'-')II,dr

The desired error dynamics given by (A,_ + K) are always chosen to be, asymptotically stable. This implies that

there exist finite positive constants m, A such that

lletA'-+K)('-+')ll _ _< me-_('-'_ Vr, t > r

which implies

supt_[0,T] fo IIeCA'+K)0-")II +dr < sup,¢to,Tl -_(l - e -_'') =

where

II(e(A'+K)')TII+ = suPt+[0,TIlI(e+A'+K>')N,

< suptEIO,T] me -'xt = .t

Therefore, tit('+ norni Of the error is bounded

llerll _< _' + _+llp'rll (11)

m

,_ = -,11,,(o)11,_' = T

In order to be more specific on these stability conditions, we need to expand the forcin4 term p(t). VUe can rewrite

i)_(t) as
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p_(t)= H_(x(t - L), u(t - L),t - L) - H,(x(t),u(t - t,),t)

+H.(x(t), u(t - L), t) - H_(x(t), u(t). t)

ll[p(t)]rll = II[p,(t)]rll < II[H,(x(t - L),u(t - r),t - L) (12)

-H.(x(t), u(t - L),t)]rll

+ll[Hr(x(t),u(t - L),t) - H.(x(t),u(t),t) r[I

Assuming that tile function Hr(x, u, t) is continuous and differentiable, the Mean Value Theorem yields [6]

II[rI.(x(t - L), u(t - L),t - L) - H.(x(t),u(t - L),t)].rtl

}][H_(x(t), u(t - L), t) - H. (x(t), u(t), t)]T}l

(14)1

_<tJ ,,(,- L))ITII
where (_ E (t - L,I) and _ E (u(t - L),u(t)).

Equations (13) and (14) involve terms in x and u. To express them in terms of el the following expressions are

used,

0H. 0H_x = 0H, (')H, x:,,_ 0H_. (15)0---7-+ _ 0--7-+ _ - o--g-_

u(t) - u(t - L) = B_-t[-x.(t - L)+ F,(x,t - L)- F.(x,t)

+Am.x(t) + Iim.r(t) - K¢e(t)]

(16)
= 13_-1[-x_,.(t - L)+,_,.(t- L)+ F,(x, t- L)-- F_(x, t)

+,_,,,,(t) - (A,,,, + K_)_(t)}

since e_ = xm_ -x_ and xmr(t) = A .... xm(t) + B.,rr(t). Substitutiol, of(13), (14), (15) and (16) in (2) arm some

algebraic manipulation yields,

IIPTII _ I1-0-'_,+ °--_-xX,,,llL + II-_-x II,L Ile_-II

oH. -1+11 ou 13, (Am. + K,)II,IleTII

+lieu u;-_ll, II(x,.r(t)- i_.(t- L))II

+l['_u n;"ll_ II_ll

+ll-_u 137a11,IlT,(x,t - L) - F_(x,t)b, tl

(tT)

where _ E (t - L,t). S.bstituting Equ. (18) in Equ. (17) yields

(18)
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HPTH < Cl + C2 neTll -{- C3 HeTH

where the constants el, c2 and ca can be identified as

(19)

: [0H, B t [ OF, 0F,_' -Tff-u ; I1_ L II--gi- + -g-_-xx.II

OHr OHr Xm
+ L II-w- + _ II

0H_ 0H_ B x
_n = [I--_-xll, L + II_ 7 II,

+ Ilx_(t) - Xmr(t -- L)II]

cgHr B 0F_
+ It-_-u ;-tl[, ][-_-x II, L

We will assume later that the terms in the right hand side of the three equations listed above are bounded and hence

the parameters ct, c2 and c3 will be bounded. The norm of the error in Equ.(l 1) can now be evaluated anti is found

to be,

II+rll _ _ +/3 Ilprll _ _ + de, + _e211+T II + Dca IIeT II

or

Ilerll < "+ _'' +*_ca II'rll if l_c2 , l (20)
- (1 - _c2)

The above equation relates the norms of the error and the error derivative, To obtain absolute bound_ on the error
another equation of this form is needed. The norm of the derivative of th,, error 6, can be found from Equs. (10)

and (1'.)),

I[&rll _ IIA_ + K[I, II'_ll + [Iprll

_< [llAm + KII, + c.'] IleTII + c, + ca ll6rll (521)

This condition can bc stated as,

II&rl[ _<

an(l substituting Equ.(20) one obtains

ct [[tA,. + Kll, + c21 ileml] if ca < i (22)_+
(1 - ca) (l - c3)

[ ItA,. + KII, + c_] (o, +/_c, + _call 6rll )

116Tll <
+( 1 -/3c.2)ct

(1 - c3)(l - de:_)

or

if ,.:, + _(c. + ca IIAm + Kill ) <

[IA., + KIIda +/3e,) + c, + c.,a
Ilerll-<

[l - _'=2 - ca - _ca IIA,- + KIId

1 is satisfied. Using the expressions for the constants el,c2 and ca, we have
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(11 lI,L+II%n;'ll,+ B='ll,I1 11,L)

[l + _ IIA_ + KII_"]

+ limB. t(A... + K_)II, "_ < 1

Based on tile foregoing analysis and relations between the vector functions Hr, Gr, and B_ given by

0H, _ aG, and 0H------L= 0G_...__ B_
8x 8x 0u 8u .

the following sufficient condition follows,

Theorem 1 ."

If the functions F(x, t), G(x, u, t), D(t) are continuous and differentiable, and

If the Jacobian matricesO0-_, O0_ , O_U , and tile vector functions _, @, _t E L_, and

If the eigenvalues of the matrix (Am + K) are in the left-half plane, and

If the followin 9 stability condition is satisfied

[1 + _ IIA_ + KII,] [11_11, L

oG- B-1 _+ _ . IIl,(l + II_xllaL)]

+ II(_u B7 ' - I)(A,.. + X.)ll, -_ < l

Then the time delay controller is stable, and

the resultant bounds on the norms of the error, e, and its derivative o. ,ire

}1-11_<

I1+.11_<

The constants cl, c,. , ca a and t3 are,

o +/3cl - aea

[1 - flc_ - ca - f3c3 IIAm + KI[,]

IIA._ + KII_('_ + flCl ) -_" Cl + C_'>¢_'

[I -/3c_ - ca -/3ca[[A,_ + Ki[, ]

(23)

(24)

(25)

OG. B_- I OF. _x r_, : II( o. - I)ll, [ L 11-37-+ x,,,tl + IIx,,,.{t) - x,.,.(t - L)II]

bG,. bG,- .
+ t. 11--5/-"+ -TT x" II

OG" B-' - I)(A.n. + K.)IIie2 = II( Ou '

ca = II-_-x Il, L + II--_--u ; - Ilk (1 + It II, t)

= ,. Ile(O)ll

/3 = T
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M

Figure 1: Regmn of Stabdity in the Ileril- II_ll space

Condition (ii) implies that the rate of change of the functions F,, Gr and D, with respect t,x and u ate bounded.

Condition (iii) implies that the desired error dynamics are chosen to be stable. Condition (iv) relates the time delay
L, the rates of change of F, and G, with respect to x and u, and the desired error dynamics specified by (Am + K).

The bounds on the nornm of the error, e and its derivative e are shown graphically in Figure 1. Equ. (20) yields

a straight line as the boundary between stable and unstable regions. Similarly, Equ. (22) yields another straight
line. The conunon region bounded by the two straight lines is the region of _tability as shown. The absolute bounds

[lell-,_ and Ilellm_ shown in Figure 1 correspond to those given by Equ. !_5).

3.3 Special cases and discussions

Condition (iv) stated in 1he proposition 1 can be rewritten in a more convenient and usable form. Th_s simplified
and convenient condition, however, is more conservative. Starting with condition (24) and after some algebraic

manipulations we obtain,

( ,-,@,,L ,A,,,+KII,1}oG. r_- 1I1-_--_ - Ill, <

(1 + II_x II, L ) / t26)
+ _ [ IIA.._ + Krll,

+IIA.,. + K It.(1 + II°0-_F_II,r )]

The condition (26) implies a bound on the variation of _u relative to the controller gain matrix B_. The size

of this bound is dependent on the delay time L, the norms of II_x II, and It_x I1,.and the desired characteristics

of error dynamics given by (A,_ + K). The smaller the delay time is and the smaller the bounds on II_x I1_and

il_x_ II, are, then the larger the allowable size of bound is on the range of _u relative to B_.
In the case of first order SISO systems the vector functions reduce to scalar functions G, = g, B, = b and F_ = f.

Some interesting results are stated below for this class of systems. For first order SISO systems, we have

ileCA_+K)t',-T)lli = I e,_,..+k)t,-,') l= e0,-+k)('-"_

)n: 1

,X = -(a_+k)
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IIA_ + K_II, = IIA,_ + KII, = I a,,_ +/e I = -(a_ +/e)

the stability condition (26) becomes

0Gr 1 -- <

The above condition implies

(27)

with the lower bound on

becomes,

Og L,
< _ < I + (2S)

(3+ 2II-_IIL) b (3+ 2ll °_]x]IlL )

b
tgg

being always positive. For the ease where _u = b the stability condition (28)

IIL < _ (29)

This implies that as II_ll becomes large, the delay tinle L must be decreased to maintain stabiliiy which makes
intuitive sense. From (28), it can be observed that for "sufficiently" small L (L ---- 0), the conditi_m is reduced to
the following limiting case,

Og
1

I1_---L'-llli < 5
0_ (30)

5 < <5
0g

The result indicates that stability is maintained for a variation of 66% of _uu with respect to b.

When the control distribution matrix "_u is a constant and known, the controller gain matrix B_ inay be chosen

such that -_u = i]_. This enables exact cancellation of the known dynamics F_ and approximate cancellation of
unknown dynamics and disturbances [33]. The stability condition (26) then reduces to a bound on delay time L in

_G
terms of _x and (A,_ + K). The known dynamics Fr, the control distribution matrix _ and the controller gain
matrix B_ do not enter the stability condition because of exact cancellation.

4 Application: Control of a high speed and high precision magnetic

bearing system

The magnetic system under consideration is a turbo molecular pump, a device used to create vaccum in special

environments such as integrated circuit manufacturing. A schematic diagram of this pump is shown in Figure 2.
The pump action is produced once the rotor, with blades attached to it, is spun by an induction motor. In order to
minimize impurities and particle generation, the rotor is suspended magnetically in the X, Y and Z directions shown

in the figure. Some information relevant to this design are summarized in Table 1. This system has five degrees

which may be described by a differential equation of the form,

-- .. = ....... 4- .......... + (31)
x, F,(x, t) G,(x,u,t) D_'(/)
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_ ,/,,_,,,,,x..:>_,_.x_,,.b',:--:" ::..',.,,z..x

Figure 2: A live-_xis magnetic b "armg

Rotor Mass

Air gap for thrttst bearing

Air gap for radial bearing

Maximum current to bearings

Maximum rotational speed

: 2.2 Kg

: 400 l_m

: 250 l_m

: 10 Amp.

: ,t,5,000 RPM

Table 1: ILelevaut system parameters

where x_ E -/?.5 and xr E R s represent displacements and velocities of the rotor with respect to the bearing stators

respectively. The current inputs to tile electromagnets are represented by the vector u E R s. The control objective

is to levitate the rotor and maintain stability. Also, the control system must reject disturbances under spinning and

nonspinning conditions of the rotor.

This plant is multi-input, multi-output with all five degrees of freedom unstable open loop. Disturbances and

coupling include forces due to gravity, magnetic actions, unbalance and gyroscopic effects. All of these effects will

show up in the vector function G_. Note that since the magnetic force is proportional to the current squared and

inverseley proportional to the gap distance squared the function Gr(x, u) is a nonlinear function dependent on the

state x and the control action u.

The variation of the component of G_ in the Z direction in terms of the gap x and control current u are shown

in Figures 3, 4, and 5. Figure 3 shows that for a gap of 0.15 mm, the rotor acceleration corresponds to 30 m/sec u

and 1 l0 m/sec u for control currents of I and 2 amps respectively. Also, for the same gap opening and with currents

Levels of I and 2 alnps, _ changes from about 0.22 x106 _ s tto about 0.88 xl0 _¢-_¢, and _ changes from about 32

m/amp-sec 2 to about 112 m/amp-sec 2. It is clear that this particular device experiences drastic dynamic changes.

Therefore, such dynanfic information would be necessary if a conventional control system is used: otherwise the

system performance may be acceptable only for some specific operating conditions.

The control algorithm was implemented on a DSP chip as shown in Figure 6. In this experimental setup, we have

the option of controlling the system using either a linear analog controller which resides in the compensation block,
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or a time delay controller implemented digitally in the DSP board. The position signal for the Time Delay controller
is obtained through the test points TP2 and/or TP3 and this signal is then sent into an analog to digital converter

(A/D converter) which is linked to the DSP board. The A/D board has an adjustable built in low pass filter where
the position signal can be filtered. The control voltage signal is sent out through the D/A converter which has a low
pass filter with adjustable cutoff frequency.

The program was written in C and assembly language. The sampling frequency used was around 5 KHz. The
computation time for the control algorithm was about 70psec. The cutoff frequency of the filter for the position

signal was kept at 7.2 KHz since the signal from the sensor is already bandlimited to 1 KHz. The position signals
are then obtained by the DSP board and the control actions representing currents are sent out through the D/A

converter. The D/A converter has a low pass filter with a cutoff frequency set to 1.5 KHz. Although a sampling rate
of 5 KHz was adequate for this system, the sampling frequency could be increased up to 15 KHz. This sampling rate

could further be increased by optimizing the program code and hence reducing the comlutation time for the Time
Delay Control law.

In this section, we will use the control procedure described earlier to maintain a desire,l performance. The model
reference for the thrust bearing position was chosen as a second order system with a natur d frequency of 200 rad/sec

and a damping ratio of .707. The experimental data shown in Figure 7 indicate that tl e actual position response

tracks the reference model response very closely. In this case, the position of the rotor _loves from 200_m to 0gin
which corresponds to the suspended configuration. The error between the desired and act ual position trajectories is

shown in the same figure and has about less than 10% maximum error. The control current necessary to produce

this response is also shown in that same figure with a maximum current of about 1.75 amps. This is an ,'xcellent
performance considering that the controller has no detailed information about the system. Figure 8 sl,ows the

closed-loop frequency response between the reference position and actual position of the thrust bearing In his case
it is clear that the magnitude and phase characteristics are close to those of the reference model selected. In order
to check the disturbance rejection properties of the control system, an additional current is injected through the

drive amplifiers (Auxiliary input 2 in Figure 6) to create an intentional disturbance force. The frequency of this
input is then varied from 0.1 llz to 10 Ktlz {sine sweep). In order to check the disturbance rejection properties, we
measured the frequency response from the additional current to the positio,, of the rotor. The disturbance rejection

properties of the thrl,st bearing are shown in Figure 9. This curve repr,'_,._ts a compliance curve The controller
rejects disturbances up to the bandwidth which is again around 200 rad/s_.c The static stiffness is about 10t) MN/m
and the minimum stiffness is about 300 KN/m at the frequency of 200 rad/_ec.

Figure 10 shows the closed loop frequency response for a radial beari[_g. Again, this response is between the

reference position and actual rotor position. This is very similar to that of the reference model. Figure 11 shows the
disturbance rejection of the radial hearing when the rotor is at rest and while it is spinning at 10900 RPM, 20100
RPM, 30400 RPM and 34800 P_PM. When the rotor is not spinning, the static stiffness is about 200 MN/m and

the minimum stiffness is about 500 KN/m. It is clear that the disturbance rejection properties are almost the same

for these different operating conditions. Figure 12 shows the effect of using a lower bandwidth of 100 rad/sec. In
this case, the disturbance rejection curve moves up indicating a lower stiffness. These data demonstrate that such a

,:ontrol scheme possesses excellent robustness properties.

5 Conclusion

The time delay controller ",algorithm uses past observations for adaption in controlling systems with unknown dynamics
and unpredictable disturt,ances. The time delay control law is formulated for a class of nonlinear syst,._ms with
nonlinear input action. '['he result of stability analysis performed based on the bounded input-bounded output

stability approach are pr,_sented and interpreted. The control scheme is implemented on a fiw-degree-of-freedom

magnetic bearing. The cc)ntrol performance, evaluated using step responses and disturbance rejection properties, is
shown to be excellent despite the complex nonlinearities in the system.
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